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Abstract 

Using second-order realisations of Lie algebras by means of creation and annihilation 
parafield operators the generators of the para-Fermi algebras are expressed as high-order 
polynomials of para-Bose or para-Fermi creation and annihilation operators. 

1. Introduction 

The possibility of realising any Lie algebra by means of bilinear com- 
binations of creation and annihilation parafield (Green) operators 
(Kademova, 1970a) enabled us to develop a method in a series of papers 
(Kademova, 1970b; Kademova & K~lnay, 1970; Kademova & Kraev, 
1969) in which the generators of the para-Fermi algebra are expressed as 
functions of bilinear combinations of  the creation and annihilation para- 
Bose or para-Fermi operators. The realisations of Lie algebras as second- 
order polynomials ofparafield operators (Kademova & Palev, 1970a) opens 
a way for new realisations of the para-Fermi algebra generators as higher- 
order polynomials of the parafield operators. 

In Section 2 isomorphic mappings of the para-Fermi algebra into the 
second-order polynomials of the Green operators are defined using the 
embedding of an arbitrary matrix realisation of the para-Fermi algebra into 
the Lie algebra d ,  of  corresponding dimensionality [ d +  = sp(2k), d _  = 
o(k,k)]. With the help of these second-order realisations one can easily 
find higher-order realisations of the para-Fermi algebra (Section 3). 

2. Embedding of the Para-Fermi Algebra into Second-Order 
Polynomials of  Parafield Operators 

+ 
We consider the algebrat ~//(n,E) generated by the entities a.  ag, i, 

j = 1 . . . .  , n in which the following relations hold 

1 + + + [~z[al, aj],, ak]_ = ~jk at 
(2.1) 

[�89 aA,, ak]_ = 0 
where ~ = • 

t A precise mathematical definition is given in Kademova (1970a). 
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By use of  the Green Ansatz  t 
P 

a i = ~ a i  ~ 

==l (2.2) 
+ ~ ,  + r  a i  = ag 

we can embed ~(n,  e) into the algebra{ qg(n,p, e) generated by 2 "p elements 
+/3 

a~ ~, a~ , i , j =  1, ... ,  n, c~, fl = 1 . . . . .  p,  defined by the relations 

= =r+~,  +~ L,,ra~ h~lj~-~ 3,~,[a~=,a/]_, La, ,a~ ] _ , = 0  
+ + + (2.3) [a~ ~, a J3], = [a,% aj~], = [a~ ~', a J3], = 0 if  ~ # /3  

In what  follows we shall find some new realisations of  the algebra qg(n,-) 
by means of  the generators of  the algebra ag(2% ~). 

I t  has been pointed out by Green that  for  a fixed p (parastatistics o f  the 
q_ 

parafield operators  at, aa) a matrix realisation of  dimensionality 2 "p for  the 
para -Fermi  algebra ~ ( n , - )  exists. 

+ 

We embed the generators FP~, FPj., i , j  = 1 . . . . .  n, of  this matr ix  realisation, 
for  which the relations (2.1) hold, into 2 "p+z | 2 "p+~ matrices 

0 

Fpi = (FPi) + 

which, as it is easily seen, satisfy the same relations (2.1). 
The  matrices (2.4) belong to the algebra d ,  [ag+ = sp(2 "p ~r), d _  = 

o(2"P,2"')]. 
We denote by G, the group which preserves the bilinear fo rm with a 

matrix 

(G+ = Sp(2"P+J), G_ = o(2"P,2"P). Since the group G~ is a semisimple one 
it is i somorphic  to the adjoint group of  the algebra d ~ ,  and therefore the 
mapp ing  0 

Fp __> ~1, = g~FP g21 
+ + + (2.5) 
Fp~ --> ~p~ = g, FP~gg 1 

where g, ~ G, is an au tomorph i sm of  the algebra ~r 
Finally, we define a set o f  new entities by the mapping  0g~ 

~ P i  OZ"~ p --> ~ ~ = �89 g~ F ' ig~ -1 ~E 
+ + + (2.6) 

~Z'~p __ 1 ~ p --1 ~ v  __> ~ q ~  - ~ & F  ~g~ ~ 

t For more details see Green (1953), where this has been introduced for the first time. 
:~ See Kademova & Palev (1970b). 
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~qr = (A, A), %r = , A = (al, �9 �9 a2.,) 
- - E  

+ + + + + + + 
A : ( a l ,  . ,  a 2 . , ) ,  e A  = ( c a  I . . . . .  para-Bose �9 �9 eaz.,), where a~, aj are operators 
of  parastatistics q for positive e, and para-Fermi ones of parastatistics q 
for e negative. 

Now we can prove the following theorem: 

Theorem 

P P i , j  = 1 ,  . . . ,  defined through the mapping 0~r The entities ~q,~, o~0r n, 
generate a para-Fermi algebra�9 

Proof: Since the mapping 0gr is one-to-one (see Kademova & Palev, 1970a), 
it is enough to prove that the Green commutation relations (2.1) are 
preserved. One can easily check using the results of the same paper that: 

+ + + + 

+ + 

_ a ~  .r . t rFp F p l  F p ,  . .-1~ - -  "2~/~qr ,5r L2 t i~ jJ--~ k J -  ~5 r "f'qr 

4- + 
1 ~ p P = 3jk-~%r162 F ig-~ 1%,  = Sjk~'q~i 

and also 
1 dZ"~p O'Z'Jp ~2"~p - -  [~[~ ~r ~ ~ . ] - ,  ~ ~r - 0 

All the other relations, which can be obtained from here, using the formal 
conjugation rules and Jacobi identity, are also satisfied. 

So we have proved that the mapping 0~r of the para-Fermi algebra, 
+ 

generated by the elements FPi, FPj, i, j = 1, .., n, into the second-order 
+ 

polynomials o~r ~q,j.~P of the Green operators of parastatistics q, is a 
Green isomorphism. In this way we have given a second-order realisation 
of  n para-Fermi operators of parastatistics p by means of 2 "p para-Bose 
or para-Fermi operators (e = • of arbitrary order of parastatistics q. 

3. Higher-Order Realisations o f  the Para-Fermi Algebra 

Here we briefly sketch the idea of how one can get higher-order realisa- 
tions of the algebra ~ ( n , - ) ,  using the second order realisations obtained 
in the previous section. In a similar way as before we can define the mapping 
0~q,_ 

l~p _._>. , .~apq,_i  = _12~qq,_ g _  F p l  g - I  r 

+ + + (3.1) 
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where 
+ 

c~q~,_ = (A' ,  A ' ) ,  

+ + + 
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~ , , -  = + , - ( ~  ~',1 . . . . .  ~ , ,2 ,~)  
A' 

+ 

= . a ~ , , j ,  i, j = 1, 2 "p, are defined by the A' . . . .  ,.~6 q~Ei ~ . . . ,  
formula (2.6) as second-order polynomials of 22"p'a para-Bose or para- 

+ 

~P Y~q,_j are fourth-order poly- Fermi operators, and therefore ~qq,-x, P 
nomials of these operators. 

Following this procedure one can realise the para-Fermi algebra gen- 
erators as higher-order polynomials of parafield operators by increasing 
the number of the generators of the para-Bose or para-Fermi algebra by 
means of  which the realisation is constructed. 

4. Discussion 

One can consider the transformations induced in the Fock space of para- 
Bose or para-Fermi operators by the para-Fermi algebra generators (2.6) 
or (3.1) in a similar way as in Kademova (1970b), Kademova & K~tlnay 
(1970) and Kademova & Kraev (1970). 

The fact that the algebra ~(n,  e) can be embedded into ql(n,p, ~) allows 
us to extend the space of the representations to the Fock space of the 
quasifield operators spanned on the vectors 

+ 

and to consider the induced transformations there. 
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