International Journal of Theoretical Physics, Vol. 3, No. 4 (1970), pp. 295-298

High-Order Realisations of the Para-Fermi Algebra with Parafield Operators

K. V. KADEMOVA

Institute of Physics, Bulgarian Academy of Sciences, Sofia, Bulgaria

Received: 5 February 1970

Abstract

Using second-order realisations of Lie algebras by means of creation and annihilation parafield operators the generators of the para-Fermi algebras are expressed as high-order polynomials of para-Bose or para-Fermi creation and annihilation operators.

1. Introduction

The possibility of realising any Lie algebra by means of bilinear combinations of creation and annihilation parafield (Green) operators (Kademova, 1970a) enabled us to develop a method in a series of papers (Kademova, 1970b; Kademova & Kálnay, 1970; Kademova & Kraev, 1969) in which the generators of the para-Fermi algebra are expressed as functions of bilinear combinations of the creation and annihilation para-Bose or para-Fermi operators. The realisations of Lie algebras as secondorder polynomials of parafield operators (Kademova & Palev, 1970a) opens a way for new realisations of the para-Fermi algebra generators as higherorder polynomials of the parafield operators.

In Section 2 isomorphic mappings of the para-Fermi algebra into the second-order polynomials of the Green operators are defined using the embedding of an arbitrary matrix realisation of the para-Fermi algebra into the Lie algebra \mathscr{A}_{ϵ} of corresponding dimensionality $[\mathscr{A}_{+} = sp(2k), \mathscr{A}_{-} =$ $o(k, k)$. With the help of these second-order realisations one can easily find higher-order realisations of the para-Fermi algebra (Section 3).

2. Embedding of the Para-Fermi Algebra into Second-Order Polynomials of Parafield Operators

We consider the algebra[†] $\mathcal{U}(n, \epsilon)$ generated by the entities a_i, \dot{a}_j, i , $j = 1, \ldots, n$ in which the following relations hold

$$
\begin{aligned} [\frac{1}{2}[\bar{a}_i, a_j]_{\epsilon}, \bar{a}_k]_+ &= \delta_{jk} \bar{a}_i \\ [\frac{1}{2}[a_i, a_j]_{\epsilon}, a_k]_+ &= 0 \end{aligned} \tag{2.1}
$$

where $\epsilon = \pm$.

t A precise mathematical definition is given in Kademova (1970a).

By use of the Green Ansatz†

$$
a_i = \sum_{\alpha=1}^p a_i^{\alpha}
$$

\n
$$
\dot{a}_i = \sum_{\alpha=1}^p \dot{a}_i^{\alpha}
$$
\n(2.2)

we can embed $\mathcal{U}(n, \epsilon)$ into the algebra $\phi \mathcal{U}(n, p, \epsilon)$ generated by 2^{np} elements $a_i^{\alpha}, \dot{a}_j^{\beta}, i, j = 1, ..., n, \alpha, \beta = 1, ..., p$, defined by the relations

$$
[a_i^{\alpha}, \dot{a}_j^{\alpha}]_{-\epsilon} = \delta_{ij}, [a_i^{\alpha}, a_j^{\alpha}]_{-\epsilon} = [\dot{a}_i^{\alpha}, \dot{a}_j^{\alpha}]_{-\epsilon} = 0
$$

$$
[a_i^{\alpha}, \dot{a}_j^{\beta}]_{\epsilon} = [a_i^{\alpha}, a_j^{\beta}]_{\epsilon} = [\dot{a}_i^{\alpha}, \dot{a}_j^{\beta}]_{\epsilon} = 0 \quad \text{if } \alpha \neq \beta
$$
 (2.3)

In what follows we shall find some new realisations of the algebra $\mathcal{U}(n,-)$ by means of the generators of the algebra $\mathscr{U}(2^{np}, \epsilon)$.

It has been pointed out by Green that for a fixed p (parastatistics of the parafield operators a_i , a_j) a matrix realisation of dimensionality 2^{np} for the para-Fermi algebra $\widetilde{\mathcal{U}}(n,-)$ exists. +

We embed the generators F_{i} , F_{j} , $i, j = 1, ..., n$, of this matrix realisation, for which the relations (2.1) hold, into $2^{np+1} \otimes 2^{np+1}$ matrices

$$
\mathbf{F}^p{}_i = \begin{pmatrix} F^p{}_i & 0 \\ 0 & -(F^p{}_i)^T \end{pmatrix}
$$

\n
$$
\dot{\mathbf{F}}^p{}_i = (\mathbf{F}^p{}_i)^+
$$
 (2.4)

which, as it is easily seen, satisfy the same relations (2.1).

The matrices (2.4) belong to the algebra \mathscr{A}_{ϵ} $\mathscr{A}_{+} = sp(2^{np+1}), \mathscr{A}_{-} =$ $o(2^{np}, 2^{np})$].

We denote by G_{ϵ} the group which preserves the bilinear form with a matrix

$$
\beta = \begin{pmatrix} 0 & I \\ -\epsilon I & 0 \end{pmatrix}
$$

 $(G_{+} = Sp(2^{np+1}), G_{-} = o(2^{np}, 2^{np})$. Since the group G_{ϵ} is a semisimple one it is isomorphic to the adjoint group of the algebra \mathscr{A}_{ϵ} , and therefore the mapping θ

$$
\mathbf{F}^p_i \to \tilde{\mathbf{F}}^p_i = g_\epsilon \mathbf{F}^p_i g_\epsilon^{-1}
$$
\n
$$
\overset{+}{\mathbf{F}}^p_i \to \overset{+}{\mathbf{F}}^p_i = g_\epsilon \overset{+}{\mathbf{F}}^p_i g_\epsilon^{-1}
$$
\n(2.5)

where $g_{\epsilon} \in G_{\epsilon}$ is an automorphism of the algebra \mathscr{A}_{ϵ} .

Finally, we define a set of new entities by the mapping θ_{ae}^p

$$
\tilde{\mathbf{F}}^p{}_i \to \mathscr{F}^p_{\mathbf{q}\epsilon i} = \frac{1}{2} \tilde{\varphi}_{q\epsilon} g_{\epsilon} \mathbf{F}^p{}_i g_{\epsilon}^{-1} \varphi_{q\epsilon}
$$
\n
$$
\dot{\tilde{\mathbf{F}}}^p{}_i \to \mathscr{F}^p_{q\epsilon i} = \frac{1}{2} \tilde{\varphi}_{q\epsilon} g_{\epsilon} \mathbf{F}^p{}_i g_{\epsilon}^{-1} \varphi_{q\epsilon}
$$
\n(2.6)

t For more details see Green (1953), where this has been introduced for the first time. \ddagger See Kademova & Palev (1970b).

where

$$
\tilde{\varphi}_{q\epsilon} = (\stackrel{+}{A}, A), \qquad \varphi_{q\epsilon} = \begin{pmatrix} A \\ + \\ -\epsilon A \end{pmatrix}, \qquad A = (a_1, \ldots, a_{2^{np}})
$$

 $A = (a_1^+, \ldots, a_{2^{np}}^+)$, $\epsilon A = (\epsilon a_1^+, \ldots, a_{2^{np}}^+)$, where a_i, a_j are para-Bose operators of parastatistics q for positive ϵ , and para-Fermi ones of parastatistics q for e negative.

Now we can prove the following theorem:

Theorem

The entities $\mathscr{F}_{q\epsilon i}^p$, $\mathscr{F}_{q\epsilon j}^p$, $i, j = 1, ..., n$, defined through the mapping $\theta_{q\epsilon}^p$, generate a para-Fermi algebra.

Proof: Since the mapping $\theta_{\alpha \epsilon}^p$ is one-to-one (see Kademova & Palev, 1970a), it is enough to prove that the Green commutation relations (2.1) are preserved. One can easily check using the results of the same paper that:

$$
\begin{split} [\frac{1}{2}[\mathcal{F}_{q\epsilon i}^{\dagger}, \mathcal{F}_{q\epsilon j}^{\dagger}]_{-}, \dot{\mathcal{F}}_{q\epsilon k}^{\dagger}]_{-} = [\frac{1}{2}\tilde{\varphi}_{q\epsilon} g_{\epsilon} \frac{1}{2}[\mathbf{F}^{\dagger}{}_{i}, \mathbf{F}^{\dagger}{}_{j}]_{-} g_{\epsilon}^{-1} \varphi_{q\epsilon}, \dot{\mathcal{F}}_{q\epsilon k}^{\dagger}]_{-} \\ = \frac{1}{2}\tilde{\varphi}_{q\epsilon} g_{\epsilon} [\frac{1}{2}[\mathbf{F}^{\dagger}{}_{i}, \mathbf{F}^{\dagger}{}_{j}]_{-}, \dot{\mathbf{F}}^{\dagger}{}_{k}]_{-} g_{\epsilon}^{-1} \varphi_{q\epsilon} \\ = \delta_{jk} \frac{1}{2}\tilde{\varphi}_{q\epsilon} g_{\epsilon} \dot{\mathbf{F}}^{\dagger}{}_{i} g_{\epsilon}^{-1} \varphi_{q\epsilon} = \delta_{jk} \dot{\mathcal{F}}_{q\epsilon i}^{\dagger} \end{split}
$$

and also

$$
[\tfrac{1}{2}[\mathcal{F}_{q\epsilon i}^p,\mathcal{F}_{q\epsilon j}^p]_-, \mathcal{F}_{q\epsilon k}^p]_-=0
$$

All the other relations, which can be obtained from here, using the formal conjugation rules and Jacobi identity, are also satisfied.

So we have proved that the mapping $\theta_{\alpha \epsilon}^p$ of the para-Fermi algebra, + generated by the elements F^p , F^p , i, $j = 1, \ldots, n$, into the second-order + polynomials $\mathscr{F}_{q_{\epsilon i}}^p$, $\mathscr{F}_{q_{\epsilon i}}^p$ of the Green operators of parastatistics q, is a Green isomorphism. In this way we have given a second-order realisation of *n* para-Fermi operators of parastatistics *p* by means of 2^{np} para-Bose or para-Fermi operators ($\epsilon = \pm 1$) of arbitrary order of parastatistics q.

3. Higher-Order Realisations of the Para-Fermi Algebra

Here we briefly sketch the idea of how one can get higher-order realisations of the algebra $\mathcal{U}(n,-)$, using the second order realisations obtained in the previous section. In a similar way as before we can define the mapping $\theta_{qq'}^p$

$$
\tilde{\mathbf{F}}^{p}{}_{i} \rightarrow \mathscr{F}^{p}{}_{qq'-i} = \frac{1}{2} \tilde{\varphi}_{qq'-} g_{-} \mathbf{F}^{p}{}_{i} g_{-}^{-1} \varphi_{qq'-} \n\dot{\tilde{\mathbf{F}}}^{p}{}_{i} \rightarrow \dot{\tilde{\mathcal{F}}}^{p}{}_{qq'-i} = \frac{1}{2} \tilde{\varphi}_{qq'-} g_{-} \mathbf{F}^{p}{}_{i} g_{-}^{-1} \varphi_{qq'-}
$$
\n(3.1)

where

$$
\tilde{\varphi}_{qq'-}=(\stackrel{\dagger}{A'},A'),\qquad \varphi_{qq'-}=\begin{pmatrix}A'\\+\\A'\end{pmatrix},\qquad A'=(\mathscr{F}_{q'\epsilon1}^q,\ldots,\mathscr{F}_{q'\epsilon2^{np}}^q)
$$

 $A' = (\mathscr{F}_{a' \in 1}^{\dagger}, ..., \mathscr{F}_{a' \in 2^{np}}^{\dagger}), \mathscr{F}_{a' \in i}^{\dagger}, \mathscr{F}_{a' \in j}^{\dagger}, i, j = 1, ..., 2^{np}$, are defined by the formula (2.6) as second-order polynomials of $2^{2^{n}q}$ para-Bose or para-Fermi operators, and therefore $\mathcal{F}_{aa'-i}^p$, $\mathcal{F}_{aa'-i}^p$ are fourth-order polynomials of these operators.

Following this procedure one can realise the para-Fermi algebra generators as higher-order polynomials of parafield operators by increasing the number of the generators of the para-Bose or para-Fermi algebra by means of which the realisation is constructed.

4. Discussion

One can consider the transformations induced in the Fock space of para-Bose or para-Fermi operators by the para-Fermi algebra generators (2.6) or (3.1) in a similar way as in Kademova (1970b), Kademova & Kálnay (1970) and Kademova & Kraev (1970).

The fact that the algebra $\mathcal{U}(n, \epsilon)$ can be embedded into $\mathcal{U}(n, p, \epsilon)$ allows us to extend the space of the representations to the Fock space of the quasifield operators spanned on the vectors

$$
\prod_{i,\alpha}^+\langle a_i^{\alpha}\rangle^{m_i^{\alpha}}|0\rangle
$$

and to consider the induced transformations there.

References

- Kademova, K. V. (1970a). Realisations of Lie Algebras with Parafield Operators. *NucL Phys.* Vol. B15, 350.
- Kademova, K. V. (1970b). Realisations of the Representations of the para-Fermi Algebra in the Fock Space of Bose Operators: Part I. *International Journal of Theoretical Physics,* Vol. 3, No. 2, p. 109.
- Kademova, K. V. and Kálnay, A. J. (1970). Realisations of the Representations of para-Fermi Algebra in Fock Space of Bose Operators: Part IL *International Journal of Theoretical Physics,* Vol. 3, No. 2, p. 115.
- Kademova, K. V. and Kraev, M. M. (1970). Realisations of the Representations of para-Fermi Algebra--Part HI: Fock Space of Fermi Operators. *International Journal of Theoretical Physics,* Vol. 3, No. 3, p. 185.
- Kademova, K. V. and Palev, T. D. (1970a). Second-order Realisations of Lie Algebras with Parafield Operators. (To be published.)
- Green, H. S. (1953). *Physical Review*, 90, 270.
- Kademova, K. V. and Palev, T. D. (1970b). Lie Algebras and Quasifield Operators. (To be published.)